Search results for "Mixed problem"

showing 2 items of 2 documents

Moderately close Neumann inclusions for the Poisson equation

2016

We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations in an open set: the size of the perforations is ϱ1ϱ2, while the distance of the cavities is proportional to ϱ1. Then, if r∗ is small enough, we analyze the behavior of the solution for (ϱ1,ϱ2) close to the degenerate pair (0,r∗). Copyright © 2016 John Wiley & Sons, Ltd.

General Mathematics010102 general mathematicsMathematical analysisGeneral Engineeringmixed problem; moderately close holes; Poisson equation; real analytic continuation in Banach space; singularly perturbed perforated domain; Mathematics (all); Engineering (all)Poisson equation01 natural sciences010101 applied mathematicsmixed problemsingularly perturbed perforated domainEngineering (all)Settore MAT/05 - Analisi MatematicaMathematics (all)0101 mathematicsPoisson's equationmoderately close holesMathematicsreal analytic continuation in Banach space
researchProduct

Nonlinear elliptic equations involving the p-Laplacian with mixed Dirichlet-Neumann boundary conditions

2019

In this paper, a nonlinear differential problem involving the \(p\)-Laplacian operator with mixed boundary conditions is investigated. In particular, the existence of three non-zero solutions is established by requiring suitable behavior on the nonlinearity. Concrete examples illustrate the abstract results.

General MathematicsOperator (physics)lcsh:T57-57.97010102 general mathematicsMathematical analysisCritical points01 natural sciencesDirichlet distributionMixed problemCritical point010101 applied mathematicsNonlinear systemsymbols.namesakeSettore MAT/05 - Analisi Matematicalcsh:Applied mathematics. Quantitative methodsp-LaplacianNeumann boundary conditionsymbolsMathematics (all)Boundary value problem0101 mathematicsDifferential (mathematics)Critical points; Mixed problem; Mathematics (all)Mathematics
researchProduct